

## ENANTIOSPECIFIC SYNTHESIS OF OPTICALLY PURE (3S)-HYDROXY ESTERS BY THE STEREOCONTROLLED YEAST REDUCTION OF $\alpha$ -SULFENYL- $\beta$ -KETOESTERS

Tamotsu Fujisawa,\* Toshiyuki Itoh, and Toshio Sato  
Chemistry Department of Resources, Mie University, Tsu, Mie 514, Japan

**Summary:** Stereocontrol in Baker's yeast reduction of  $\beta$ -ketoesters was successfully achieved by introducing the sulphenyl group at  $\alpha$ -position of the esters to afford optically pure (S)- $\beta$ -hydroxy esters.

Microbial-mediated reaction of synthetic substrates is one of the useful methods for the preparation of chiral intermediates in synthetic chemistry. The microorganism most popular and frequently used for this purpose is the Baker's yeast (*Saccharomyces cerevisiae*).<sup>1</sup> Reduction of  $\beta$ -ketoesters with the Baker's yeast produces 3-hydroxy carboxylic acid derivatives, which are especially useful building blocks for the natural product synthesis.<sup>1</sup> Ethyl (S)-3-hydroxybutylate (4; R<sup>1</sup> = Me, R<sup>3</sup> = Et) thus obtained from ethyl 3-oxobutanoate has high optical purity in a range of 70 ~ 97%ee.<sup>2</sup> While ethyl 3-oxobutanoate is reduced to S isomer, ethyl 3-oxopentanoate<sup>3</sup> and ethyl 5-benzyloxy-3-oxopentanoate<sup>4</sup> are preferentially converted into R isomer of the corresponding alcohols with low optical purities (~ 40%ee). It is generally assumed that the stereoselectivity of the yeast reduction of acyclic ketones may be predicted by the Prelog's rule.<sup>5</sup> Depending upon the relative size of the groups R<sub>S</sub> and R<sub>L</sub>, which is recognized by the oxidoreductase in the yeast, reduction may occur from Re-face (see 1 + 2). Consequently, if the carboxylic group of  $\beta$ -ketoesters could be recognized as the R<sub>L</sub> group by the reductase, by introducing a certain functional group at  $\alpha$ -position of the esters, (S)- $\beta$ -hydroxyesters could be obtained. We now report here that the Baker's yeast reduction of  $\beta$ -ketoesters is strongly influenced by the introduction of

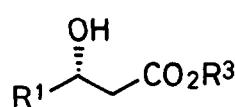
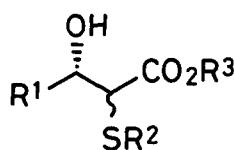
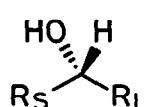
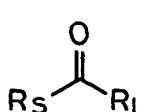
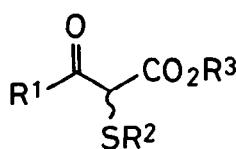






Table I. Results of the Baker's Yeast Reduction of  $\alpha$ -Sulfonylated  $\beta$ -Ketoesters (5)

| $\alpha$ -Sulfonylated R <sup>1</sup>              | $\beta$ -Ketoesters R <sup>2</sup> | R <sup>3</sup>  | Chemical Yield <sup>a</sup> (%)<br>( <i>threo</i> : <i>erythro</i> ) <sup>b</sup> | <i>threo</i> -3<br>[ $\alpha$ ] <sub>D</sub> <sup>c</sup><br>%ee <sup>d</sup> | <i>erythro</i> -3<br>[ $\alpha$ ] <sub>D</sub> <sup>c</sup><br>%ee <sup>d</sup> |
|----------------------------------------------------|------------------------------------|-----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| CH <sub>3</sub>                                    | CH <sub>3</sub>                    | CH <sub>3</sub> | 72 (72:28)                                                                        | +101° >96                                                                     | -77° >96                                                                        |
| CH <sub>3</sub>                                    | CH <sub>3</sub>                    | Et              | 62 (59:41)                                                                        | +86° >96                                                                      | -69° >96                                                                        |
| CH <sub>3</sub>                                    | CH <sub>3</sub>                    | t-Bu            | 75 (41:59)                                                                        | +64° >96                                                                      | -72° >96                                                                        |
| CH <sub>3</sub>                                    | Ph                                 | CH <sub>3</sub> | 40 (83:17)                                                                        | +178° >96                                                                     | -133° >96                                                                       |
| CH <sub>3</sub>                                    | Ph                                 | Et              | 49 (73:27)                                                                        | +179° >96                                                                     | -131° >96                                                                       |
| CH <sub>3</sub> CH <sub>2</sub>                    | CH <sub>3</sub>                    | Et              | 44 (47:53)                                                                        | +69° >96                                                                      | -65° >96                                                                        |
| PhCH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub>                    | Et              | 30 (32:68)                                                                        | +24° >96                                                                      | -34° >96                                                                        |


<sup>a</sup> All products were isolated by silica-gel TLC and identified by IR and NMR spectra.

<sup>b</sup> Determined by isolated yields. <sup>c</sup> All specific rotations were measured in CHCl<sub>3</sub> (C ca. 1).

<sup>d</sup> No (*R*)-enantiomer could be detected by NMR. A control experiment established a practical limit for the detection of 4% of diastereoisomer by the <sup>1</sup>H NMR spectrum of JOEL JNM-PMX 60 si spectrometer. All *S* configurations at C<sub>3</sub> were confirmed by the comparison with reported values of the specific rotations of desulfonylated 3-hydroxy esters.

sulfonyl substituent<sup>6</sup> at  $\alpha$ -position, and that the stereoselectivity is dramatically improved to produce (*3S*)-isomer (3) with high optical purity (>96%ee).  $\alpha$ -Sulfonyl- $\beta$ -hydroxyesters (3) can be then smoothly desulfonylated, and converted to the optically pure *S* isomer of  $\beta$ -hydroxyesters (4).

A typical procedure of the Baker's yeast reduction is described as follows: A suspension of 160 ml of water, 11 g of D-glucose and 10 g of Baker's yeast (Oriental yeast Co.), was stirred for 30 min at room temperature (23 °C), then 10 ml of ethanol solution of ethyl 2-methylthio-3-oxobutyrate (5; R<sup>1</sup> = R<sup>2</sup> = Me, R<sup>3</sup> = Et) (2.0 mmol) was added to the suspension. The reaction was monitored by silica-gel TLC analysis for the disappearance of the starting ketoester. After the ketoester faded (about 2 days), ca. 15 g of celite and 50 ml of ether was added, and the mixture was stirred for 30 min, then was filtered through a celite pad. The filtrate was extracted with ethyl acetate and was evaporated in vacuo. The product of  $\alpha$ -sulfonyl- $\beta$ -hydroxyester (3) consisted of *threo* and *erythro*<sup>8</sup> isomers, which could be easily separated into each pure isomers by TLC on silica gel. These two isomers were clearly distinguished by those <sup>1</sup>H NMR data.<sup>9</sup> The optical purity of each isomer of 3 was determined by <sup>1</sup>H NMR using chiral shift reagent, Eu(hfc)<sub>3</sub>.



5

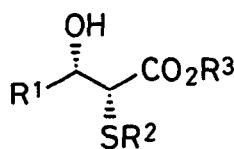
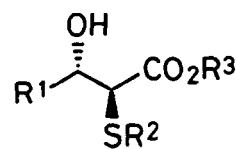


3 (*threo*)3 (*erythro*)

Table I summarizes the results obtained by the Baker's yeast reduction of  $\alpha$ -sulfenyl  $\beta$ -ketoesters. Although it gives both *threo* and *erythro* isomers, it should be noted that complete *S* configuration in the 3 position with hydroxy group of both *threo* and *erythro*  $\alpha$ -sulfenyl- $\beta$ -hydroxyesters was confirmed in all cases. Even the reduction of 2-methylthio-3-oxopentanoate and 2-methylthio-5-benzyloxy-3-oxopentanoate gave only *S* alcohols with very high optical purity. All these results shows that the sulfenyl functional group at  $\alpha$ -position of  $\beta$ -ketoester could control the stereospecificity of reductase in the yeast. 3-Oxobutanoate with the methylthio group at the 2 position was reduced in better yield than the 2-phenylthio-3-oxobutanoate. On the other hand, *t*-butylester of  $\alpha$ -phenylthio-3-oxobutanoate could not give the corresponding alcohols, but it slowly decomposed under this fermenting conditions.

The desulfonylation of  $\alpha$ -sulfenylated  $\beta$ -hydroxyesters was next examined, which was successfully achieved by the two step procedure.  $\alpha$ -Methylthio- $\beta$ -hydroxyester (3;  $R^2 = Me$ ) was oxidized to the corresponding sulfoxide 6 with *m*-chloroperbenzoic acid (*m*-CPBA) in  $CH_2Cl_2$  at  $-78^\circ C$ . The sulfoxide 6, without any purification, was then converted into  $\beta$ -hydroxyester (4) by the reductive removal of  $\alpha$ -sulfinyl group using aluminum amalgam according to the method of Corey *et al.*<sup>10</sup> Both *threo* and *erythro* isomers of 3 ( $R^1 = CH_3$ ,  $R^3 = t$ -Bu) gave 4 ( $R^1 = CH_3$ ,  $R^3 = t$ -Bu) which have entirely same value of the specific rotation.<sup>11</sup> The results of the desulfonylation of  $\alpha$ -sulfenylated  $\beta$ -hydroxyesters were shown in Table II. From the value of the specific rotation of the  $\beta$ -hydroxyesters, it can be confirmed that all these  $\beta$ -hydroxyesters have *S* configuration of the hydroxy group of 3-carbon.

Although numerous efforts<sup>2,12,13</sup> have been paid to find useful species of microorganisms, which have the ability to produce useful products, by screening

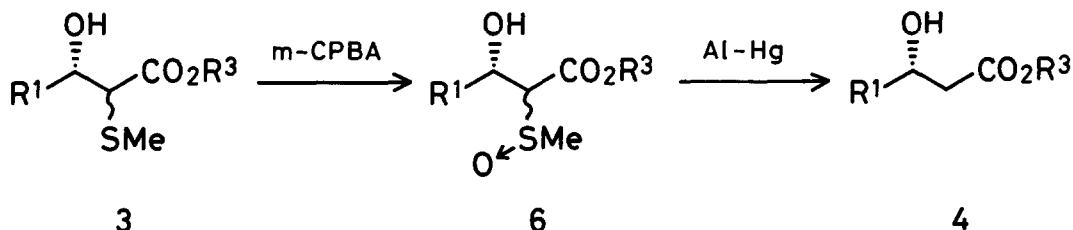



Table II. Yield and Optical Rotation of  $\beta$ -Hydroxyesters (4) obtained by Desulfonylation of  $\alpha$ -Sulfenyl- $\beta$ -hydroxyesters (3)<sup>a</sup>

| $R^1$             | $R^3$        | Yield(%) <sup>b</sup> | $[\alpha]_D$ in $CHCl_3$ |                                                          |
|-------------------|--------------|-----------------------|--------------------------|----------------------------------------------------------|
| $CH_3$            | Et           | 44                    | $+43.6^\circ$ (c 0.990)  | lit. <sup>2</sup> $[\alpha]_D^{23} +42.7^\circ$ (100%ee) |
| $CH_3$            | <i>t</i> -Bu | 56                    | $+26.3^\circ$ (c 1.64)   |                                                          |
| $CH_3CH_2$        | Et           | 52                    | $+33.1^\circ$ (c 0.875)  | lit. <sup>13</sup> $[\alpha]_D^{23} +28^\circ$ (84%ee)   |
| $PhCH_2OCH_2CH_2$ | Et           | 39                    | $+13.5^\circ$ (c 0.960)  |                                                          |

<sup>a</sup> The results were obtained from the mixtures of *threo* and *erythro* isomers. <sup>b</sup> Over all yield (3  $\rightarrow$  4). All products were isolated by silica-gel TLC and distillation (Kugelrohr).

them, there have been a few trial<sup>14</sup> to improve the stereochemistry of easily available Baker's yeast reduction by modifying the substrate as described here. Thus we could show that the control of the stereochemistry in enzymatic reduction is effective by the introduction of sulfenyl group to the substrate, and that the sulfenyl substituent plays an important role in enantiospecific reduction with Baker's yeast. Studies on the synthetic application and development of this stereocontrolled reduction with easily available Baker's yeast are in progress.<sup>15</sup>

#### References

1. D. Seebach and M. F. Züger, *Helv. Chim. Acta*, **65**, 495 (1982); K. Mori and T. Sugai, *J. Synth. Org. Chem. Jpn.*, **41**, 1044 (1983), and references cited therein.
2. T. Sugai, M. Fujita, and K. Mori, *Nippon Kagakukaishi*, **1983**, 1315, and references cited therein.
3. G. Fráter, *Helv. Chim. Acta*, **62**, 2829 (1979).
4. Unpublished result; (*R*)-(-)-Ethyl 5-benzyloxy-3-hydroxypentanoate was obtained by Baker's yeast reduction as described in this text.  $[\alpha]_D^{23} -5.3^\circ$  (c 1.12,  $\text{CHCl}_3$ , 40%ee). The optical purity was determined by analysis of the  $^1\text{H}$  NMR spectra of the corresponding esters of (+)- $\alpha$ -methoxy- $\alpha$ -trifluoromethylphenylacetic acid (MTPA) in the presence of  $\text{Eu}(\text{fod})_3$  shift reagent.
5. V. Prelog, *Pure Appl. Chem.*, **9**, 119 (1964); J. B. Jones, C. J. Sih, and D. Perlman, "Applications of Biochemical Systems in Organic Chemistry," Part I, John Wiley & Sons Inc, New York (1976).
6. Successful reduction of ketones, which have sulfenyl group at  $\alpha$ - or  $\beta$ -position on them, with Baker's yeast were recently reported; B. S. Deol, D. D. Ridley, and G. W. Simpson, *Aust. J. Chem.*, **29**, 2459 (1976); R. L. Crumbie, D. D. Ridley, and G. W. Simpson, *J. Chem. Soc., Chem. Commun.*, **1977**, 315; S. Iriuchijima and N. Kojima, *Agric. Biol. Chem.*, **42** (2), 451 (1978); R. W. Hoffmann, W. Helbig, and W. Ladner, *Tetrahedron Lett.*, **23**, 3479 (1982); D. Ghiringhelli, *ibid.*, **24**, 287 (1983).
7.  $\alpha$ -Methylthio- $\beta$ -ketoesters were prepared in over 80% yield from the corresponding  $\alpha$ -chloro- $\beta$ -ketoesters using the reaction with methanethiol in the presence of triethylamine according to the method of Sasaki *et al.*; T. Sasaki, K. Hayakawa, and H. Ban, *Tetrahedron*, **38**, 85 (1982).  $\alpha$ -Phenylthio- $\beta$ -ketoesters were directly prepared from ethyl acetoacetate using the reaction with benzenesulfenylchloride in the presence of catalytic amount of iron powder in good yield (>95%).
8. For nomenclature see; R. Noyori, I. Nishida, and J. Sakata, *J. Am. Chem. Soc.*, **103**, 2106 (1981).
9. The coupling constants of  $\alpha$  proton (doublet) at  $\delta$  2.8 ~ 3.0 of *erythro* isomers ( $J = 8 \sim 9$  Hz) are always greater than those of *threo* isomers ( $J = 7 \sim 8$  Hz). *cf.* H.O. House, D. S. Crumrine, A. Y. Teranishi, and H. D. Olmstead, *J. Am. Chem. Soc.*, **95**, 3310 (1973).
10. G. Solladié, F. M. Moghadam, C. Luttmann, and C. Mioskowski, *Helv. Chem. Acta*, **65**, 157 (1982); E. J. Corey, *J. Am. Chem. Soc.*, **86**, 1639 (1964).
11.  $[\alpha]_D^{23} +26^\circ$  (c 1.19,  $\text{CHCl}_3$ ) from the *threo* isomer;  $[\alpha]_D^{23} +26^\circ$  (c 1.63,  $\text{CHCl}_3$ ) from the *erythro* isomer.
12. For example; H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, *Tetrahedron Lett.*, **23**, 4051 (1982).
13. D. Seebach, M. F. Züger, F. Giovannini, B. Sonnleither, and A. Fiechter, *Angew. Chem., Int. Ed. Engl.*, **23**, 151 (1984).
14. There have been only two successful attempts to control the stereo-selectivity of Baker's yeast reduction by modifying the carbonyl substituent; M. Hirama, M. Shimizu, and M. Iwashita, *J. Chem. Soc., Chem. Commun.*, **1983**, 599; B. Zhou, A. S. Gopalan, F. VanMiddlesworth, W. Shieh, and C. J. Sih, *J. Am. Chem. Soc.*, **105**, 5925 (1983).
15. The present work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture in Japan.